版元ドットコム

探せる、使える、本の情報

文芸 新書 社会一般 資格・試験 ビジネス スポーツ・健康 趣味・実用 ゲーム 芸能・タレント テレビ・映画化 芸術 哲学・宗教 歴史・地理 社会科学 教育 自然科学 医学 工業・工学 コンピュータ 語学・辞事典 学参 児童図書 ヤングアダルト 全集 文庫 コミック文庫 コミックス(欠番扱) コミックス(雑誌扱) コミックス(書籍) コミックス(廉価版) ムック 雑誌 増刊 別冊
金属ナノ・マイクロ粒子の最新技術と応用《普及版》 米澤徹(監修) - シーエムシー出版
..
【利用不可】

金属ナノ・マイクロ粒子の最新技術と応用《普及版》 (キンゾクナノマイクロリュウシノサイシンギジュツトオウヨウフキュウバン)

このエントリーをはてなブックマークに追加
B5判
237ページ
定価 4,300円+税
ISBN
978-4-7813-1467-9   COPY
ISBN 13
9784781314679   COPY
ISBN 10h
4-7813-1467-8   COPY
ISBN 10
4781314678   COPY
出版者記号
7813   COPY
Cコード
C3043  
3:専門 0:単行本 43:化学
出版社在庫情報
不明
初版年月日
2020年8月17日
書店発売日
登録日
2020年6月18日
最終更新日
2020年6月19日
このエントリーをはてなブックマークに追加

紹介

2013年刊「金属ナノ・マイクロ粒子の最新技術と応用」の普及版。構造制御から分散・安定化、合成・調製、評価法などの重要項目を網羅し、応用技術として触媒、導電性インク、光材料、医療材料の研究開発を詳説している。

目次

【基礎編】

第1章 各種金属ナノ粒子の構造制御技術

1 金属ナノ粒子・微粒子のサイズ・形状制御  
1.1 はじめに
1.2 ナノ粒子の構造制御
1.2.1 保護剤・添加剤による粒子径制御
1.2.2 保護剤による形状制御
1.2.3 ハードテンプレート法
1.2.4 物性研究

2 構造・粒径を制御した金ナノ粒子の合成法 
2.1 金ナノ粒子と人類のかかわり
2.2 金ナノ粒子の特性と応用
2.3 種々の金微粒子
2.4 金ナノロッドの合成法
2.5 金ナノロッドの成長メカニズムの全容
2.6 界面活性剤と金ナノロッド形状
2.6.1 直径の制御
2.6.2 長さの制御
2.6.3 ゲル化した界面活性剤水溶液中での金ナノロッド成長
2.7 おわりに

3 微細構造を巧みに制御する銀ナノ粒子の製法  
3.1 はじめに
3.2 ポリオール還元法
3.3 エチレングリコールを用いたポリオール還元法
3.4 AgNO3を用いたポリオール還元法
3.5 PVPを用いたポリオール還元法
3.6 銀ナノ結晶の精密形状制御合成
3.7 銀ナノ結晶育成にあたっての準備
3.8 銀ナノキューブの育成
3.9 多重双晶五角形銀ナノワイヤの育成
3.10 単一双晶銀ピラミッド
3.11 銀ナノキューブを種結晶とする
3.12 まとめ

第2章 金属ナノ粒子の分散・安定化技術

1 ナノ粒子分散の理論と評価  
1.1 はじめに
1.2 金属ナノ粒子の分散工程と分散性
1.2.1 ナノ粒子表面の物理化学的特性と微粒子化過程
1.2.2 ナノ粒子表面間に働く力と分散安定化工程
1.3 分散性の新規評価方法
1.3.1 遠心沈降分析法
1.3.2 超音波スペクトロスコピー
1.4 おわりに

2 金属ナノ粒子の分散・安定化  
2.1 はじめに
2.2 金属ナノ粒子の合成と分散制御
2.3 液晶を分散媒とするナノ粒子
2.4 液晶分子保護パラジウムナノ粒子を分散した液晶表示素子の特性に及ぼす効果
2.5 高分子保護ロジウムナノ粒子分散液晶の応答速度改善
2.6 おわりに

3 金属ナノ粒子の高濃度分散  
3.1 高粒子濃度スラリーの調製方法
3.2 高粒子濃度スラリーの粒子分散状態評価
3.3 ナノ粒子スラリーの浸透圧測定
3.4 浸透圧と動的光散乱法との相関

4 ナノ粒子分散系のレオロジー制御と応用  
4.1 はじめに
4.2 コロイドゲルの3次元プリンティング
4.2.1 コロイドゲルのレオロジー
4.2.2 コロイドゲルの3次元プリンティング
4.2.3 コロイドゲルの調製
4.3 ナノ粒子分散系の磁気粘性流体
4.3.1 磁気粘性効果(MR効果)
4.3.2 鉄ナノ粒子分散系の作製
4.3.3 鉄ナノ粒子分散系のMR効果
4.4 おわりに

第3章 合成・調製

1 熱分解制御法によるナノ粒子の大量合成 
1.1 はじめに
1.2 熱分解制御法による金属ナノ粒子の大量合成
1.3 熱分解制御法による多様なナノ粒子の合成
1.3.1 合金ナノ粒子の合成
1.3.2 酸化物ナノ粒子の合成
1.3.3 硫化物ナノ粒子の合成
1.4 おわりに

2 貴金属バイメタルシングルナノ粒子の表面担持体の湿式合成と解析  
2.1 はじめに
2.2 イオンの還元によるナノ粒子の合成
2.3 保護剤・担体
2.4 還元の手法
2.5 バイメタルのシングルナノ粒子
2.6 触媒材料としてのバイメタルのシングルナノ粒子
2.7 具体的な事例(PtRu系,PtCu系)での合成と解析の紹介

3 液中プラズマ法  
3.1 液中プラズマ法
3.2 印加電力の周波数と液体の物理的性質
3.3 大気圧近傍でのプラズマにおける温度の制御
3.4 ナノ・マイクロ粒子製造を目的とした液中プラズマの実例
3.4.1 直流電圧印加による液中プラズマ発生
3.4.2 パルス電圧印加による液中プラズマ発生
3.4.3 高周波印加による液中プラズマ発生
3.4.4 マイクロ波による液中プラズマ発生
3.4.5 レーザーアブレーション
3.5 液中プラズマの計測

4 レーザー利用粒子合成  
4.1 はじめに
4.2 液中レーザーアブレーション法
4.2.1 背景
4.2.2 貴金属ナノ粒子
4.2.3 メカニズム
4.3 液中レーザー溶融法
4.3.1 背景
4.3.2 金サブミクロン球状粒子
4.3.3 銅サブミクロン球状粒子
4.3.4 液中レーザー溶融法の特徴
4.4 おわりに

5 卑金属ナノ材料の無電解析出と反応制御  
5.1 はじめに
5.2 CuO懸濁水溶液からのCuナノ粒子の析出と酸化状態制御
5.2.1 反応のギブズエネルギー変化
5.2.2 電位-pH図を利用したナノ粒子の酸化状態の予測
5.3 非水溶媒中における鉄族金属ナノ材料の無電解析出
5.4 おわりに

第4章 評価法

1 光誘起力ナノ動力学法と金属ナノ粒子集積系の光応答理論  
1.1 はじめに
1.2 光照射下での金属ナノ粒子の動的過程と光応答の理論
1.2.1 光誘起力ナノ動力学法(LNDM)
1.2.2 球状セルを用いた離散化積分法(DISC)のナノ粒子集積系への適用
1.3 金属ナノ粒子の光集合現象,光輸送,超放射
1.3.1 金属ナノ粒子複合体の光による集合現象と相転移
1.3.2 変調光定在波と揺らぎによるナノ粒子の輸送・選別
1.3.3 金属ナノ粒子高密度集積系の光応答とグリーン・バイオ応用への展開
1.4 まとめ

2 動的光散乱法による粒子径測定 
2.1 はじめに
2.2 動的光散乱法による測定原理
2.3 解析原理
2.3.1 光子相関法
2.3.2 キュムラント法解析
2.3.3 ヒストグラム法解析
2.4 動的光散乱法によるナノ・マイクロ粒子の測定例
2.4.1 標準ポリスチレンラテックスの測定
2.4.2 金コロイド粒子の粒子径測定
2.5 おわりに

3 電子顕微鏡を用いたナノ粒子解析  
3.1 はじめに
3.2 透過電子顕微鏡法(TEM)
3.3 ナノ粒子の形状および構造観察
3.4 走査透過型電子顕微鏡法(STEM)
3.5 元素分析器(EDS,EELS)
3.6 電子顕微鏡観察時の注意点

4 その場TEM観察法  (成島隆)
4.1 はじめに
4.2 その場TEM観察用ホルダー,装置
4.2.1 加熱機構
4.2.2 ガス導入機構
4.3 金属ナノ粒子・微粒子へのその場TEM観察応用例
4.4 おわりに


【応用編】

第1章 触媒

1 金ナノ粒子触媒  
1.1 はじめに
1.2 金触媒の3要素
1.2.1 担体の選択
1.2.2 金ナノ粒子の直径
1.2.3 接合界面周辺部の長さ
1.3 触媒調製方法
1.3.1 析出沈殿法
1.3.2 析出還元法
1.3.3 共沈法
1.3.4 固相混合法
1.4 金ナノ粒子の触媒特性
1.4.1 選択的酸素酸化反応
1.4.2 選択水素化反応
1.4.3 ワンポット合成
1.5 まとめ

2 DMF保護パラジウム・銅ナノ粒子触媒  
2.1 はじめに
2.2 DMF還元法によるパラジウムナノクラスター(Pd NCs)および銅ナノ粒子(Cu NPs)の液相合成
2.3 DMF還元法によるPd NCsを触媒として用いた鈴木―宮浦クロスカップリング反応
2.4 DMF還元法によるPd NCsを触媒として用いた溝呂木―Heck反応
2.5 DMF還元法によるPd NCsを触媒として用いた小杉―右田―Stille反応2.6 DMF還元法によるCu NPsを触媒として用いたUllmann型 Oーアリール化反応
2.7 まとめ

3 カーボン・ニュートラルエネルギーサイクルの実現に向けたナノ合金触媒の開発状況  
3.1 はじめに
3.2 固溶体型ナノ合金の作製法
3.3 CuPd合金ナノ粒子を担持させたTiO2光触媒による硝酸還元アンモニア合成反応
3.4 CuPdナノ合金上でのアルカリ条件におけるエチレングリコール酸化反応
3.5 まとめ

第2章 導電性インク

1 金属ナノインク  
1.1 はじめに
1.2 導電インク技術の概要
1.2.1 有機高分子
1.2.2 カーボン・ナノチューブ/グラフェン
1.2.3 金属ナノ粒子
1.2.4 銀塩・銅塩
1.3 フレキシブル配線
1.4 おわりに

2 低温焼結性導電インク・ペーストの実際 
2.1 はじめに
2.2 低温焼結性金属ナノ粒子の設計技術
2.3 低温焼結性金属ナノ粒子インクの実際
2.4 低温焼結性金属ナノ粒子ペーストの実際
2.5 おわりに

3 導電材料に用いられる銅微粒子 
3.1 はじめに
3.2 銅ナノ粒子・銅微粒子の合成
3.2.1 銅イオンの還元による銅微粒子の合成
3.2.2 金属錯体の熱分解による銅微粒子の合成
3.2.3 バルク金属からの原子・クラスターの放出
3.3 銅ペーストの製造
3.4 焼結を模擬したその場観察
3.5  まとめ

第3章 光材料

1 プラズモニック太陽電池 
1.1 はじめに
1.2 LSPRの増強電場
1.3 太陽電池へのプラズモン共鳴の利用
1.4 増強電場を利用した太陽電池の研究例
1.4.1 粒子サイズに対する色素膜厚の効果
1.4.2 色素―粒子間距離の効果
1.4.3 粒子密度(粒子―粒子間距離)の効果
1.4.4 形状の効果
1.4.5 効果的なナノ構造
1.5 おわりに

2 金属ナノ粒子と光誘起電荷分離 
2.1 はじめに
2.2 電子シンク・助触媒としての利用
2.3 光アンテナとしての利用
2.4 光誘起電子ドナーとしての利用
2.5 おわりに

3 プラズモン利用材料  
3.1 はじめに
3.2 局所分光計測用材料
3.3 ナノ加工・ナノ操作用材料
3.4 分子検出材料
3.5 おわりに

4 光磁気材料 
4.1 はじめに
4.2 EuXのナノサイズ化
4.3 EuXナノ結晶の光磁気特性I : 光磁気ポーラロン
4.4 EuXの光磁気特性II : ファラデー効果
4.5 EuXナノ組織体の光磁気特性
4.6 最後に

第4章 医療材料

1 金ナノ粒子間ナノギャップを利用したDNA検出 
1.1 はじめに
1.2 隣接した金ナノ粒子間にナノギャップを持つ金ナノ粒子膜
1.2.1 金ナノ粒子膜作製方法
1.2.2 金ナノ粒子膜の電子顕微鏡観察
1.3 電気的DNA検出
1.3.1 検出方法
1.3.2 検出結果
1.4 おわりに

2 金/酸化鉄複合ナノ粒子のナノバイオ応用  
2.1 金ナノ粒子と磁性酸化鉄ナノ粒子の複合化
2.1.1 ナノバイオ分野におけるナノ粒子利用
2.1.2 金ナノ粒子と磁性酸化鉄ナノ粒子の複合化
2.2 磁気分離/精製試薬としての応用
2.3 遺伝子導入補助試薬としての応用
2.4 MRI造影剤としての応用
2.5 結言

3 金属ナノ粒子の発熱作用を利用したがん治療 
3.1 はじめに
3.2 ナノ粒子の発熱作用を直接利用したがん治療法
3.2.1 磁気ハイパーサーミア療法
3.2.2 プラズモン光熱変換療法
3.3 ナノ粒子の発熱作用を間接的に利用したがん治療法
3.4 おわりに

上記内容は本書刊行時のものです。